Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

De-Suo Yang* and Jin-Bao Guo

Department of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721007, People's Republic of China

Correspondence e-mail:
desuoyang@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.035$
$w R$ factor $=0.079$
Data-to-parameter ratio $=14.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2'-[1-(3,5-Dichloro-2-hydroxyphenyl)methylidene]isonicotinohydrazide monohydrate

The asymmetric unit of the title compound, $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot-$ $\mathrm{H}_{2} \mathrm{O}$, consists of a Schiff base molecule and a solvent water molecule. The Schiff base molecule is approximately planar and displays a trans configuration with respect to the $\mathrm{C}=\mathrm{N}$ double bond. The crystal structure is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{N}$, and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a network.

Comment

Schiff base compounds have been of great interest for a long time and play an important role in the development of coordination chemistry (Musie et al., 2001; Bernardo et al., 1996; Paul et al., 2002). As an extension of our work on the structural characterization of such compounds (Yang, 2006a,b,c), the crystal structure of the title compound, (I), is reported here.

(I)

The asymmetric unit of (I) comprises a Schiff base molecule and a solvent water molecule (Fig. 1), in which all the bond lengths are within normal ranges (Allen et al., 1987) and comparable with those of similar compounds (Qian et al., 2006; Qiu, Xu et al., 2006; Qiu, Fang, Liu \& Zhu, 2006; Qiu, Fang, Yang et al., 2006; Yang, 2006d,e). The $\mathrm{C} 7=\mathrm{N} 1$ bond length of 1.278 (3) A confirms it as a double bond, with a trans configuration. The $\mathrm{C} 8-\mathrm{N} 2$ bond is also relatively short [1.358 (3) Å], suggesting some degree of delocalization in the acetohydrazide system. The dihedral angle between the benzene ring and the pyridine ring is $5.6(2)^{\circ}$.

In the crystal structure, water molecules are linked to the Schiff base molecules through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1). The molecules are further linked through intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a network (Fig. 2).

Experimental

3,5-Dichlorosalicylaldehyde ($0.1 \mathrm{mmol}, 19.2 \mathrm{mg}$) and pyridine-4carboxylic acid hydrazide ($0.1 \mathrm{mmol}, 13.7 \mathrm{mg}$) were dissolved in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml}, 10: 1 \mathrm{v} / \mathrm{v})$. The mixture was stirred at room temperature to give a clear yellow solution. Crystals of the title

Received 31 August 2006
Accepted 4 September 2006

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. An intramolecular hydrogen bond is shown as a dashed line.
compound were formed by gradual evaporation of the solvent over a period of about one week at room temperature. Analysis, found: C 47.40, H 3.49, N 12.73%; calculated for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$: C 47.58, H 3.38, N 12.81%.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	$Z=2$
$M_{r}=328.15$	$D_{x}=1.558 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1}$	Mo $K \alpha$ radiation
$a=3.887(1) \AA$	$\mu=0.48 \mathrm{~mm}^{-1}$
$b=13.638(2) \AA$	$T=298(2) \mathrm{K}$
$c=13.231(2) \AA$	Plate, yellow
$\beta=94.546(2)^{\circ}$	$0.27 \times 0.20 \times 0.08 \mathrm{~mm}$
$V=699.2(2) \AA^{3}$	

Data collection

Bruker SMART CCD area-detector	5674 measured reflections
diffractometer	2831 independent reflections
ω scans	2544 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.002$
(SADABS; Sheldrick, 1996)	$\theta_{\max }=26.5^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.079$
$S=1.02$
2831 reflections
200 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0386 P)^{2}\right] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.20 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.18 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Absolute structure: Flack (1983),
1334 Friedel pairs
Flack parameter: 0.02 (6)

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1$	0.82	1.87	2.580 (3)	145
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 3^{\mathrm{i}}$	0.894 (16)	1.991 (15)	2.863 (3)	165
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1^{\text {ii }}$	0.84 (3)	2.11 (3)	2.895 (3)	155
$\mathrm{O} 3-\mathrm{H} 3 B \cdots \mathrm{O} 2$	0.84 (2)	2.00 (2)	2.829 (3)	167 (3)
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{~N} 3^{\text {iii }}$	0.93	2.49	3.394 (3)	165
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O}^{\text {i }}$	0.93	2.56	3.320 (3)	140
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O} 3^{\text {i }}$	0.93	2.47	3.364 (3)	162

Symmetry codes: (i) $-x+2, y-\frac{1}{2},-z+1$; (ii) $x+1, y, z$; (iii) $x-2, y, z-1$.

Figure 2
The packing of (I), viewed along the a axis. Dashed lines indicate intermolecular hydrogen bonds.

The $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ atoms $\mathrm{H} 2, \mathrm{H} 3 A$ and $\mathrm{H} 3 B$ were located in a difference Fourier map and refined isotropically, with the $\mathrm{N}-\mathrm{H}$ distance restrained to 0.90 (1) \AA, the $\mathrm{O}-\mathrm{H}$ distances restrained to 0.85 (1) \AA and the $\mathrm{H} \cdots \mathrm{H}$ distance restrained to 1.37 (2) \AA. The other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with an $\mathrm{O}-\mathrm{H}$ distance of $0.82 \AA$ and $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and $1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXL97.

Financial support from the Baoji University of Arts and Sciences Research Fund is gratefully acknowledged.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernardo, K., Leppard, S., Robert, A., Commenges, G., Dahan, F. \& Meunier, B. (1996). Inorg. Chem. 35, 387-396.

Bruker (2002). SAINT (Version 5.60) and SMART (Version 5.60). Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Musie, G. T., Wei, M., Subramaniam, B. \& Busch, D. H. (2001). Inorg. Chem. 40, 3336-3341.
Paul, S., Barik, A. K., Peng, S. M. \& Kar, S. K. (2002). Inorg. Chem. 41, 58035809.

Qian, H.-Y., Yin, Z.-G., Jia, J., Liu, S.-M. \& Feng, L.-Q. (2006). Acta Cryst. E62, o3623-o3624.
Qiu, X.-Y., Fang, X.-N., Liu, W.-S. \& Zhu, H.-L. (2006). Acta Cryst. E62, o2685-o2686.
Qiu, X.-Y., Fang, X.-N., Yang, S.-L., Liu, W.-S. \& Zhu, H.-L. (2006). Acta Cryst. E62, o2687-o2688.
Qiu, X.-Y., Xu, H.-J., Liu, W.-S. \& Zhu, H.-L. (2006). Acta Cryst. E62, o2304o2305.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Yang, D.-S. (2006a). Acta Cryst. E62, o1395-o1396.
Yang, D.-S. (2006b). Acta Cryst. E62, o1591-o1592.
Yang, D.-S. (2006c). Acta Cryst. E62, o2365-o2366.
Yang, D.-S. (2006d). Acta Cryst. E62, o3755-o3756.
Yang, D.-S. (2006e). Acta Cryst. E62, o3792-o3793.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

